
The Screened Coulomb Potential (SCP) Continuum 
Solvent Model for Macromolecules 

 
For an arbitrary distribution of N charges qi at positions ri the electric field 
E(r) at any position r is given by  
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and it is always possible to define the potential φ(r) at position r as 
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where the physically measurable dielectric function ε(r) and the mathematical 
function D(r) are related by the definition of electric potential )()( rrE rφ−∇=  
Note, for example, that for one particle in pure solvent (i.e., spherical 
symmetry) the relationship between the two quantities is given by 
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Derivation of the SCP-ISM 
 

The complete formulation of the SCP-ISM was reported in [1,2]; here the 
derivation presented in [2] will be outlined. Figure 1 presents a schematic 
diagram of the thermodynamic cycle used for building the system 
(macromolecule immersed in the solvent). The basic assumption in this 
derivation is that the screening function (which is position-dependent and for 
which the exact form is in general unknown) is approximated as a distance-
dependent function and then the potential of Eq.(2a) is written as 
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At the present stage of development the SCP-ISM is a “first order” model 
that requires refinement (“higher orders” corrections) by introducing an 
explicit position dependency of the screening function (this is part of an 
ongoing effort and a preliminary description of this correction is reported in 
Refs.[18,19]) [note, however, that in an indirect way the total screening D(r) 
is, actually, a complex function of the position, in the same sense that 



Coulomb’s law is for an arbitrary distribution of charges, because 
comparison of Eqs.(2) leads to D(r)~[ ] [ ])( iii iii i Dqq rrrrrr −−− ∑∑ ]. 
 
From the upper panel, the total electrostatic energy ET is given by 
 

(4)  
 

where the first term is the energy required to construct the molecule in the 
vacuum, and the second term is the polar component of the solvation energy 
∆Gs

pol.  
The process of bringing a particle from (1) to (2) is thought of as a typical 
solvation process where the particle is transferred from vacuum to an 
effective (or virtual) solvent composed of the growing molecule in vacuum 
(at any given point in the process the growing molecule is a dielectric 
medium even when it is surrounded by vacuum). This effective medium is 
characterized by a dielectric function εv(r) or by its related screening 
function Dv(r), where the index v indicates that the molecule is in vacuum. 
This dielectric (or screening) function accounts for the average effects of all 
the possible screening mechanisms in the system composed of the 

macromolecule in the vacuum. 
     Similarly, in bringing particles 
from (1) to (3) each particle is 
solvated into an effective medium 
composed by the growing 
macromolecule in the solvent. 
Here too the effective medium is 
characterized by a dielectric 
function εs(r) or by its related 
screening function Ds(r), where 
the index s indicates that the 
molecule is immersed into the 
solvent. As before, this dielectric 
(or screening) function accounts 
for the average effects of all the 
possible screening mechanisms in 
the system composed of the 
macromolecule in the solvent. 
Therefore, to calculate ET and 
∆Gs

pol it is necessary to evaluate 
explicitly ∆W1→2 and ∆W1→3. For  
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this we resort to the decomposition shown in the lower panel of Figure 1. In 
this expanded thermodynamic cycle the two defined virtual solvents, s and v, 
are the ones described above, i.e., the effective dielectric media defined by 
the macromolecule within the solvent and in vacuum, respectively. From the 
energetic point of view the system in (2) or (3) (upper panel) is equivalent to 
the system in (D) or (C) (lower panel), respectively. Therefore, 
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The calculation of ET requires the evaluation of the four terms at the right 
hand side of Eqs.(5). These terms are given by 
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(6b) 
  

In these equations ∆Wv,i is energy required to transfer particle i from (A) to 
(E), i.e., the solvation energy of i in the virtual solvent v; ∆Wv,ij is the work 
necessary to bring particle i and j from infinite separation to their final 
relative positions within the solvent v; and similarly for ∆Ws,i and ∆Ws,ij but 
in the virtual solvent s. 
 
Calculation of the Interaction Energy Terms 
The energy terms ∆Wv,ij and ∆Ws,ij describe the work required to bring the 
particle j to its final position in the molecule, in the field generated by 
particle i, for the growing system immersed in the virtual solvent v or s, 
respectively, i.e., 

 
(7)  
 

where Ei(r)=qi(r-ri)/ε(|r-ri|)|r-ri|3 and Dj(r)=ε(|r-ri|)Ej(r) (in the first integral 
r is the position of particle j in any point of the arbitrary trajectory along 
which the particle j is taken to the final position rj; the second integral is 
evaluated over all the space when particle i and j are located in their final 
positions in the macromolecule, i.e., ri and rj). 
Using Eq.(2b) valid for distance-dependent systems the line integral can be 
integrated exactly noting that  
 











+−=







 )(
)(

1
)(

1
)(

1
2 xD

dx
d

xD
x

xDxxxDdx
d    (8) 

 

and yields 
 
(9)  
 

where ∆Wv,ij and ∆Ws,ij are obtained by specifying D(rij) as Dv(rij) or Ds(rij), 
respectively. 
Calculation of the Self-Energy Terms 
The energy ∆Wi requires for transferring a particle from vacuum to a polar 
liquid with dielectric ε(r) is given by 

 
(10)  
 

where E0 is the electric field created by the particle in vacuum; the 
integration is performed over all the space. Using Eqs.(2b) and (8), both 
integrals in Eq.(10) can be evaluated exactly and give  
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where Ri and R’i are the characteristic radii of the particle in the solvent and 
in the vacuum, respectively (formally, the lower integration limit). Using the 
Born approximation it is now possible to write the solvation energy as 

 
(12)  
 

where Ri,B is the Born radius of the particle i. Therefore, the self-energies 
∆Wv,i and ∆Ws,i are obtained by specifying the corresponding screening 
function in each medium. 
    Finally, the total electrostatic energy ET of the macromolecule in the 
solvent is given by 
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and since the same reasoning applies to the formation of the molecule in the 
vacuum, i.e., 
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the polar part of the solvation energy of the macromolecule ∆Gs
pol is given 

by ET – ET’, i.e., 
 

 
(15)  
 
 
 
 

 
Qualitative Description of the SCP-ISM 

 
Figure 2 illustrates, schematically, the conceptual difference of the SCP-ISM 
with respect to other approaches: Panel A shows a macroscopic body with 
dielectric constant ε2 immersed in a medium of dielectric constant ε1. For 
this macroscopic system a well-defined boundary is placed between the two 
media. The components of the electric and displacement fields satisfy the 
usual boundary conditions at the interface. As illustrated in panel B implicit 
models usually transfer this macroscopic view directly to the microscopic 
realm of macromolecules, including small peptides and even small organic 
molecules. Note, however, that the dielectric function increases slowly with 

the distance, as shown from 
basic theory and bulk 
dielectric value is reached at 
distances larger than 5-10 Å 
(see LDS theory and 
correction for Onsagre’s 
reaction field). As shown in 
panels C and D, the 
derivation of the SCP-ISM 
follows an alternative path, 
making the transition from 
the microscopic to the 
macroscopic domain where 
an effective dielectric 
function permeates all of 
space. In this case the bulk 
dielectric value (or the so- 
Figure 2



called external dielectric εs) is reached only far from the protein, but 
becomes a more complex function as the distance to the protein decreases. In 
the SCP-ISM the reaction field is taken into account implicitly through the 
form of the screening function, which is obtained from experimental data 
and introduced in the parameters of the model. 
 
Dielectric Properties and Screening Functions in Pure Liquids 
What is ε(r) in the case of an ionic or dipolar source immersed in a 
polar/polarizable medium such as water? 
The answer is in the Lorentz-Debye-Sack theory of polar solvation that 
incorporates Onsager’s reaction field corrections (neglecting other corrections). 
It can be shown that the screening function in the case of an ion is given by 
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Iterative or numerical solution shows ε(r) yields dielectric 
profiles with sigmoidal behavior in r. Therefore D(r) is 
also sigmoidal in r. Figure 3 is taken from Ref.[1] where 
the dielectric profile of three liquids are shown along with 
the effects of Onsager’s reaction fields. 
Note that finding a first order differential equation with general 
sigmoidal solutions might be sufficient to obtain D(r) analytically 
from Eq.(3). This equation was proposed and takes the form 
dD(r)/dr = λ(1+D(r))(Dw-D(r)) with solutions of the form 
D(r)=(1+Dw)/[1+k exp(-αr)]-1, where k=(Dw-1)/2 and the quantity 
α=λ(1+Dw) modulates the screening in the system, Dw is the static 
dielectric constant of the solvent.  

Figure 3: dielectric profiles of
acetamide, acetone and water,
as calculated in Ref.[1]. 

The parameter α contains all the physics of the system; for pure liquids one 
value of α is shown to describe accurately the screening as defined by ε(r) in 
Fig.3. Therefore, the SCP-ISM makes use of screening functions of the 
sigmoidal form with parameters α (to be adjusted as discussed in details in 
Ref.[1]) that describe all the screening mechanisms in the system. A protocol 
for calculating Born radii and corrections for Hydrogen-bonding (HB) strength 
are also reported in Refs.[1-4] (note that careful evaluation of the resulting HB 
stabilization is needed because of the new term ET of Eq.(13) that replaces the 
Coulomb interaction in the original force-field as discussed in detail in Ref.[3])  



 
Relevant References 
[1] S A Hassan, F Guarnieri and E L Mehler, A General Treatment of Solvent Effects 
Based on Screened Coulomb Potentials; J. Phys. Chem. B 104, 6478 (2000). 
[2] S A Hassan and E L Mehler, A Critical Analysis of Continuum Electrostatics: The 
Screened Coulomb Potential-Implicit Solvent Model and the Study of the Alanine 
Dipeptide and Discrimination of Misfolded Structures of Proteins; PROTEINS 47, 45 
(2002). 
[3] S A Hassan, F Guarnieri and E L Mehler, Characterization of Hydrogen Bonding in a 
Continuum Solvent Model; J. Phys. Chem. B 104, 6490 (2000) 
[4] S A Hassan, E L Mehler, D Zhang and H Weinstein, Molecular Dynamics 
Simulations of Peptides and Small Proteins with a Continuum Electrostatics Model based 
on Screened Coulomb Potentials; PROTEINS 51, 109 (2003) 
[5] E L Mehler, The Lorentz-Debye-Sack Theory and Dielectric Screening of 
Electrostatic Effects in Proteins and Nucleic Acids, in Molecular Electrostatic Potential: 
Concepts and Applications, J S Murray and K Sen, Editors, Elsevier Science, 
Amsterdam, pp. 371-405 (1996) 
[6] S Ehrenson, Continuum Radial Dielectric Functions for Ion and Dipole Solution 
Systems; J. Comp. Chem. 10, 77 (1989). 
[7] P Debye, Polar Molecules; New York, Dover (1929).  
[8] P Debye and L Pauling, The Inter-Ionic Attraction Theory of Ionized Solutes. IV. The 
Influence of Variation of Dielectric Constant on the Limiting Law for Small 
Concentrations. J. Am. Chem. Soc. 47, 2129 (1925). 
[9] H A Lorentz, Theory of Electrons; New York, Dover (1952) 
[10] V H Sack, The Dielectric Constant of Electrolytes; Phys. Z. 27, 206 (1926) 
[11] V H Sack, The Dielectric Constants of Solutions of Electrolytes at Small 
Concentrations; Phys. Z. 28, 199 (1927). 
[12] L Onsager, Electric Moments of Molecules in Liquids; J. Amer. Chem. Soc. 58, 1486 
(1936).  
[13] C J F Böttcher, The Dielectric Constant of Dipole Liquids; Physica V, 635 (1938) 
[14] E L Mehler and G Eichele, Electrostatic Effects in Water Accessible Regions of 
Proteins; Biochemistry 23, 3887 (1984) 
[15] G Schwarzenbach, Der Einfluss einer Ionenladung auf die Acidität einer Säure; Z. 
Physik. Chem. A 176, 133 (1936). 
[16] J B Hasted, D M Ritson and C H Collie, Dielectric Properties of Aqueous Ionic 
Solutions. Parts I and II; J. Chem. Phys. 16, 1 (1948). 
[17] E L Mehler, A Self-Consistent, Free Energy Based Approximation to Calculate pH 
Dependent Electrostatic Effects in Proteins; J. Phys. Chem. 100, 16006 (1996) 
[18] E L Mehler and F Guarnieri, A Self-Consistent, Microenvironment Modulated 
Screened Coulomb Potential Approximation to Calculate pH Dependent Electrostatic 
Effects in Proteins. Biophys. J. 77, 3 (1999).  
[19] Mehler EL, Fuxreiter M, Simon I, and Garcia-Moreno E. B, The Role of 
Hydrophobic Microenvironment in Modulating pKa Shifts in Proteins; PROTEINS 48, 
283 (2002). 


	Dielectric Properties and Screening Functions in Pure Liquids

